Refine Your Search

Topic

Author

Search Results

Technical Paper

In-Cylinder Air-Flow Characteristics Using Tomographic PIV at Different Engine Speeds, Intake Air Temperatures and Intake Valve Deactivation in a Single Cylinder Optical Research Engine

2016-02-01
2016-28-0001
Fuel-air mixing is the main parameter, which affects formation of NOx and PM during CI combustion. Hence better understanding of air-flow characteristics inside the combustion chamber of a diesel engine became very important. In this study, in-cylinder air-flow characteristics of four-valve diesel engine were investigated using time-resolved high-speed tomographic Particle Imaging Velocimetry (PIV). For visualization of air-flow pattern, fine graphite particles were used for flow seeding. To investigate the effect of different operating parameters, experiments were performed at different engine speeds (1200 rpm and 1500 rpm), intake air temperatures (room temperature and 50°C) and intake port configurations (swirl port, tangential port and combined port). Intake air temperature was controlled by a closed loop temperature controller and intake ports were deactivated by using a customized aluminum gasket.
Technical Paper

Use of Water-Butanol Blends in a Turbocharged Common Rail Dual Fuel Engine for Enhanced Performance and Reduce Smoke Levels

2018-04-03
2018-01-0251
Experiments were conducted on a turbocharged three cylinder automotive common rail diesel engine with port injection of butanol. This dual fuel engine was run with neat butanol and blends of water and butanol (up to 20% water by mass). Experiments were performed at a constant speed of 1800 rpm and a brake mean effective pressure of 11.8 bar (full load) at varying butanol to diesel energy share values while diesel was either injected as a single pulse or as twin pulses (Main plus Post). Open engine controllers were used for varying the injection parameters of diesel and butanol. Water butanol blends improved the brake thermal efficiency by a small extent because of better combustion phasing as compared to butanol without water. When the butanol to diesel energy share was high, auto-ignition of butanol occurred before the injection of diesel. This lowered the ignition delay of diesel and hence elevated the smoke level.
Technical Paper

Effect of Fuel Injection Parameters on Performance and Emission Characteristics in HCCI Engine - A CFD Study

2017-11-05
2017-32-0096
Today, homogenous charge compression ignition (HCCI) engines are becoming very popular because of their potential to reduce soot and nitric oxides (NOx) emissions simultaneously. But, their performance and emission characteristics are very much dependent upon fuel injection strategy and parameters. However, they also have many challenges viz., improper combustion phasing, high rate of pressure rise and narrow operating range. Therefore, addressing them is very essential before making them a commercial success. This study focuses on evaluating the effect of fuel injection strategy and parameters on the performance and emission characteristics of a HCCI engine by computational fluid dynamics (CFD) analysis. In this study, a four-stroke engine operating in the HCCI mode is considered and the CFD analysis is carried out by using the CONVERGE.
Technical Paper

Effect of Baffle Height on the in-Cylinder Air-Fuel Mixture Preparation in a Gasoline Direct Injection Engine – A Computational Fluid Dynamics Analysis

2024-04-09
2024-01-2697
In-cylinder fluid dynamics enhance performance and emission characteristics in internal combustion (IC) engines. Techniques such as helical ports, valve shrouding, masking, and modifications to piston profiles or vanes in ports are employed to achieve the desired in-cylinder flows in these engines. However, due to space constraints, modifications to the cylinder head are typically minimal. The literature suggests that introducing baffles into the combustion chamber of an IC engine can enhance in-cylinder flows, air-fuel mixing, and, subsequently, stratification. Studies have indicated that the height of the baffles plays a significant role in determining the level of improvement in in-cylinder flow and air-fuel mixing. Therefore, this study employs Computational fluid dynamics (CFD) analysis to investigate the impact of baffle height on in-cylinder flow and air-fuel mixing in a four-stroke, four-valve, spray-guided gasoline direct injection (GDI) engine.
Technical Paper

Numerical Investigation of Aerodynamic Characteristics on a Blunt Cone Model at Various Angles of Attack under Hypersonic Flow Regimes

2024-06-01
2024-26-0446
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum angle of attack where the ratio of the lift to drag force is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the angle of attack is varied from 0º to 20º. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed.
X